Исследование ученых Пермского Политеха позволит снизить риск операций на сердце
16.03.2023
Коронарные стенты, изготовленные из металлических сплавов, используются для расширения закупоренных кровеносных сосудов и поддержания достаточного кровотока в организме человека. Деформация и разрушение установленного стента может привести к разрыву аорты, а это, в свою очередь, к смерти. Чтобы снизить риск столь необходимой процедуры, ученые Пермского Политеха провели моделирование деформации стента, которое позволило определить наименее прочные места в конструкции и причины разрывов. Исследование выполнено в рамках реализации программы академического стратегического лидерства «Приоритет-2030», а его результаты вносят вклад в обеспечение технологического суверенитета России в области биоматериалов и биоустройств.
Статья опубликована в журнале «Materials», входящем в первый квартиль Q1 наиболее цитируемых журналов международной базы Web of Science.
— Прочность медицинских стентов определяется структурой их материала. Для изготовления баллонно-расширяемых стентов – самых доступных и потому популярных – как правило, используются нержавеющая сталь или сплавы на основе кобальта и хрома. Натурные исследования структуры металла затруднительны. Поэтому, чтобы контролировать свойства изделий, нами была разработана точная математическая модель, описывающая внутреннюю структуру материала – нержавеющей стали 316L, — поясняет младший научный сотрудник лаборатории многоуровневого моделирования конструкционных и функциональных материалов, ассистент кафедры «Математическое моделирование систем и процессов» Роман Герасимов.
Коронарный стент вводится в сосуд пациента с помощью баллонного катетера. При достижении места закупорки баллон раздувается и вдавливает стент в стенку артерии, удерживая достигнутое при раздувании баллона увеличение просвета. При этом стент неизбежно деформируется, что может впоследствии привести к его разрушению и повреждению сосуда. Подобные повреждения стентов случаются, по разным данным, в 1-18% случаев.
— Часто стенты, расширяемые баллоном, неравномерно деформируются во время установки. Это может привести к их повреждению вплоть до разрушения или излома. Моделирование процесса деформации позволило нам определить самые уязвимые места конструкции, — рассказывает проректор по приоритетным проектам, доцент кафедры «Математическое моделирование систем и процессов», кандидат физико-математических наук Павел Волегов.
Разработанная математическая модель включает два уровня исследования. На макроуровне рассматривается деформация проволоки из стали, а на мезоуровне – ее составляющие, то есть зерна металла. Благодаря этому модель учитывает особенности межзеренных границ, которые, создавая искажения кристаллической решетки, во многом определяют деформацию стента. Также на нее влияет размер зерен металла, их взаимное расположение и направление прикладываемых усилий.
Полученные данные позволили ученым выявить наиболее опасные режимы деформации, существенно влияющие на размещение биомедицинских стентов. В перспективе они позволят проводить операции по расширению закупоренных сосудов без риска для пациента.
Статья опубликована в журнале «Materials», входящем в первый квартиль Q1 наиболее цитируемых журналов международной базы Web of Science.
— Прочность медицинских стентов определяется структурой их материала. Для изготовления баллонно-расширяемых стентов – самых доступных и потому популярных – как правило, используются нержавеющая сталь или сплавы на основе кобальта и хрома. Натурные исследования структуры металла затруднительны. Поэтому, чтобы контролировать свойства изделий, нами была разработана точная математическая модель, описывающая внутреннюю структуру материала – нержавеющей стали 316L, — поясняет младший научный сотрудник лаборатории многоуровневого моделирования конструкционных и функциональных материалов, ассистент кафедры «Математическое моделирование систем и процессов» Роман Герасимов.
Коронарный стент вводится в сосуд пациента с помощью баллонного катетера. При достижении места закупорки баллон раздувается и вдавливает стент в стенку артерии, удерживая достигнутое при раздувании баллона увеличение просвета. При этом стент неизбежно деформируется, что может впоследствии привести к его разрушению и повреждению сосуда. Подобные повреждения стентов случаются, по разным данным, в 1-18% случаев.
— Часто стенты, расширяемые баллоном, неравномерно деформируются во время установки. Это может привести к их повреждению вплоть до разрушения или излома. Моделирование процесса деформации позволило нам определить самые уязвимые места конструкции, — рассказывает проректор по приоритетным проектам, доцент кафедры «Математическое моделирование систем и процессов», кандидат физико-математических наук Павел Волегов.
Разработанная математическая модель включает два уровня исследования. На макроуровне рассматривается деформация проволоки из стали, а на мезоуровне – ее составляющие, то есть зерна металла. Благодаря этому модель учитывает особенности межзеренных границ, которые, создавая искажения кристаллической решетки, во многом определяют деформацию стента. Также на нее влияет размер зерен металла, их взаимное расположение и направление прикладываемых усилий.
Полученные данные позволили ученым выявить наиболее опасные режимы деформации, существенно влияющие на размещение биомедицинских стентов. В перспективе они позволят проводить операции по расширению закупоренных сосудов без риска для пациента.
Марина Осипова © Вечерние ведомости
Читать этот материал в источнике
Читать этот материал в источнике
В Екатеринбурге автобус врезался в дерево: пострадали водитель и пассажиры
Воскресенье, 22 декабря, 12.32
В Свердловской области за сутки произошло 23 пожара: в Пелыме погибли два человека
Воскресенье, 22 декабря, 11.54
На трассе «Пермь – Екатеринбург» в Ачитском районе ввели реверсивное движение из-за ДТП
Воскресенье, 22 декабря, 11.26