Разработка ученых Пермского политеха повысит эффективность оптоволоконной передачи энергии
17.03.2025
Ежегодно в мире растет число телекоммуникационных сетей и устройств. Неотъемлемое условие их бесперебойной работы – наличие электропитания в любой точке. Однако иногда оборудование размещается в таком месте, куда проводить электрический кабель сложно, дорого и даже опасно: это касается высоковольтных датчиков, антенн сотовой связи, оборудования на взрыво- и пожароопасном производстве. В таких случаях используют оптоволокно: оно передает свет, который затем трансформируется в электричество с помощью специального устройства – фотоэлектрического преобразователя. Проблема в том, что в процессе он сильно нагревается, из-за чего хуже работает и быстрее ломается. Ученые Пермского политеха разработали такую конструкцию, которая обладает эффективной системой теплоотвода и не нуждается в дополнительном внешнем охлаждении. Это позволит снизить рабочую температуру кристалла на 30-40°С и повысить эффективность его работы на 10%.
На полезную модель выдан патент № 232070. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».
Оптоволоконные кабели способны передавать мощность в виде светового излучения, которое генерируется лазерным источником. На стороне питаемого устройства находится особая конструкция – фотоэлектрический преобразователь, который превращает световую энергию в электрическую. За этот процесс отвечает кристалл из полупроводниковых материалов (например, кремния) – ключевой элемент, «сердце» устройства, где и происходит фотоэлектрический эффект. Эта технология передачи энергии по оптоволокну, называемая Power-over-Fiber (PoF), также снижает риск возгорания проводки, защищает линию питания от помех, уменьшает ее габариты и вес.
Проблема в том, что в процессе преобразования энергии выделяется много тепла, и кристалл начинает перегреваться, что снижает его эффективность и ускоряет разрушение материалов. Существующие приборы стабилизации его температуры слишком громоздки и сложны в эксплуатации, либо имеют высокую стоимость.
Ученые Пермского политеха разработали такую конструкцию устройства, которая обладает эффективной системой теплоотвода, не тратит на это энергию и не нуждается в дополнительном внешнем охлаждении.
– Разработка представляет собой модуль (деталь) фотоэлектрического преобразователя. Кристалл для переработки света в электроэнергию расположен на теплоотводящей площадке внутри полой конструкции, которая состоит из четырех согнутых и спаянных вместе теплопроводящих трубок. Их нижние части загнуты, а к верхним прикреплены радиаторы, которые отдают тепло в воздух. Вся эта конструкция усилена четырьмя штифтами (крепежами) и закрывается крышкой. Таким образом, для отвода тепла не нужны дополнительные вентиляторы или другое активное охлаждение, – рассказывает Алексей Гаркушин, научный сотрудник кафедры общей физики ПНИПУ.
– Модуль работает следующим образом. Свет от оптоволокна через разъем поступает внутрь устройства. Там он многократно отражается от поверхностей медных трубок и попадает на кристалл, который преобразует его в электроэнергию. Как следствие, выделяется тепло; чтобы кристалл не перегрелся, оно быстро передается сначала на теплоотводящую площадку, потом на трубки, и далее – на радиатор, который рассеивает его в воздух. Такая конструкция позволяет снизить рабочую температуру кристалла на 30-40°С, что в свою очередь повышает эффективность преобразования энергии не менее чем на 10%, – поясняет Виктор Криштоп, профессор кафедры «Общая физика», доктор физико-математических наук.
Конструкция фотоэлектрического преобразователя, разработанная учеными Пермского политеха, эффективно отводит тепло и решает проблему перегрева кристалла, что повышает его эффективность и надежность. Это не только улучшает эксплуатационные характеристики оборудования, но и снижает риски, связанные с его использованием в опасных зонах.
На полезную модель выдан патент № 232070. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».
Оптоволоконные кабели способны передавать мощность в виде светового излучения, которое генерируется лазерным источником. На стороне питаемого устройства находится особая конструкция – фотоэлектрический преобразователь, который превращает световую энергию в электрическую. За этот процесс отвечает кристалл из полупроводниковых материалов (например, кремния) – ключевой элемент, «сердце» устройства, где и происходит фотоэлектрический эффект. Эта технология передачи энергии по оптоволокну, называемая Power-over-Fiber (PoF), также снижает риск возгорания проводки, защищает линию питания от помех, уменьшает ее габариты и вес.
Проблема в том, что в процессе преобразования энергии выделяется много тепла, и кристалл начинает перегреваться, что снижает его эффективность и ускоряет разрушение материалов. Существующие приборы стабилизации его температуры слишком громоздки и сложны в эксплуатации, либо имеют высокую стоимость.
Ученые Пермского политеха разработали такую конструкцию устройства, которая обладает эффективной системой теплоотвода, не тратит на это энергию и не нуждается в дополнительном внешнем охлаждении.
– Разработка представляет собой модуль (деталь) фотоэлектрического преобразователя. Кристалл для переработки света в электроэнергию расположен на теплоотводящей площадке внутри полой конструкции, которая состоит из четырех согнутых и спаянных вместе теплопроводящих трубок. Их нижние части загнуты, а к верхним прикреплены радиаторы, которые отдают тепло в воздух. Вся эта конструкция усилена четырьмя штифтами (крепежами) и закрывается крышкой. Таким образом, для отвода тепла не нужны дополнительные вентиляторы или другое активное охлаждение, – рассказывает Алексей Гаркушин, научный сотрудник кафедры общей физики ПНИПУ.
– Модуль работает следующим образом. Свет от оптоволокна через разъем поступает внутрь устройства. Там он многократно отражается от поверхностей медных трубок и попадает на кристалл, который преобразует его в электроэнергию. Как следствие, выделяется тепло; чтобы кристалл не перегрелся, оно быстро передается сначала на теплоотводящую площадку, потом на трубки, и далее – на радиатор, который рассеивает его в воздух. Такая конструкция позволяет снизить рабочую температуру кристалла на 30-40°С, что в свою очередь повышает эффективность преобразования энергии не менее чем на 10%, – поясняет Виктор Криштоп, профессор кафедры «Общая физика», доктор физико-математических наук.
Конструкция фотоэлектрического преобразователя, разработанная учеными Пермского политеха, эффективно отводит тепло и решает проблему перегрева кристалла, что повышает его эффективность и надежность. Это не только улучшает эксплуатационные характеристики оборудования, но и снижает риски, связанные с его использованием в опасных зонах.
Марина Осипова © Вечерние ведомости
Читать этот материал в источнике
Читать этот материал в источнике
Жителя Кировграда будут судить за истязание сына
Четверг, 21 августа, 13.21
Вечерняя поездка на мотоцикле за городом обернулась для жителя Серова аварией
Четверг, 21 августа, 12.54
Жительница Верхней Пышмы отсудила у банка «исчезнувшие» в банкомате 200 тысяч рублей
Четверг, 21 августа, 11.25